The graph distance game and some graph operations
نویسندگان
چکیده
منابع مشابه
The graph distance game and some graph operations
In the graph distance game, two players alternate in constructing a maximal path. The objective function is the distance between the two endpoints of the path, which one player tries to maximize and the other tries to minimize. In this paper we examine the distance game for various graph operations: the join, the corona and the lexicographic product of graphs. We provide general bounds and exac...
متن کاملreciprocal degree distance of some graph operations
the reciprocal degree distance (rdd), defined for a connected graph $g$ as vertex-degree-weighted sum of the reciprocal distances, that is, $rdd(g) =sumlimits_{u,vin v(g)}frac{d_g(u) + d_g(v)}{d_g(u,v)}.$ the reciprocal degree distance is a weight version of the harary index, just as the degree distance is a weight version of the wiener index. in this paper, we present exact formu...
متن کاملSome New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
متن کاملComputing GA4 Index of Some Graph Operations
The geometric-arithmetic index is another topological index was defined as 2 deg ( )deg ( ) ( ) deg ( ) deg ( ) G G uv E G G u v GA G u v , in which degree of vertex u denoted by degG (u). We now define a new version of GA index as 4 ( ) 2 ε ( )ε ( ) ( ) ε ( ) ε ( ) G G e uv E G G G u v GA G u v , where εG(u) is the eccentricity of vertex u. In this paper we compute this new t...
متن کاملOn Powers of Some Graph Operations
Let $G*H$ be the product $*$ of $G$ and $H$. In this paper we determine the rth power of the graph $G*H$ in terms of $G^r, H^r$ and $G^r*H^r$, when $*$ is the join, Cartesian, symmetric difference, disjunctive, composition, skew and corona product. Then we solve the equation $(G*H)^r=G^r*H^r$. We also compute the Wiener index and Wiener polarity index of the skew product.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Notes in Discrete Mathematics
سال: 2014
ISSN: 1571-0653
DOI: 10.1016/j.endm.2014.08.021